Scientific notation is an important way to represent very big, and very small, numbers. Here is a sample of astronomical problems that will test your skill in using this number representation.

Problem 1: The sun produces 3.9×10^{33} ergs per second of radiant energy. How much energy does it produce in one year $(3.1 \times 10^7 \text{ seconds})$?

Problem 2: One gram of matter converted into energy yields 3.0×10^{20} ergs of energy. How many tons of matter in the sun is annihilated every second to produce its luminosity of 3.9×10^{33} ergs per second? (One metric ton = 10^6 grams)

Problem 3: The mass of the sun is 1.98×10^{33} grams. If a single proton has a mass of 1.6×10^{-24} grams, how many protons are in the sun?

Problem 4: The approximate volume of the visible universe (A sphere with a radius of about 14 billion light years) is 1.1×10^{31} cubic light-years. If a light-year equals 9.2×10^{17} centimeters, how many cubic centimeters does the visible universe occupy?

Problem 5: A coronal mass ejection from the sun travels 1.5×10^{13} centimeters in 17 hours. What is its speed in kilometers per second?

Problem 6: The NASA data archive at the Goddard Space Flight Center contains 25 terabytes of data from over 1000 science missions and investigations. (1 terabyte = 10^{15} bytes). How many CD-roms does this equal if the capacity of a CD-rom is about $6x10^8$ bytes? How long would it take, in years, to transfer this data by a dial-up modem operating at 56,000 bits/second? (Note: one byte = 8 bits).

Problem 7: Pluto is located at an average distance of 5.9×10^{14} centimeters from Earth. At the speed of light (2.99 x 10^{10} cm/sec) how long does it take a light signal (or radio message) to travel to Pluto and return?

Problem 8: The planet HD209458b, now known as Osiris, was discovered by astronomers in 1999 and is at a distance of 150 light-years (1 light-year = 9.2 x 10¹² kilometers). If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed of 700 km/sec (about 10 times faster than our fastest spacecraft: Helios-1), how long would it take to reach Osiris?

<u>Problem 1:</u> The sun produces 3.9×10^{33} ergs per second of radiant energy. How much energy does it produce in one year $(3.1 \times 10^7 \text{ seconds})$? **Answer:** $3.9 \times 10^{33} \times 3.1 \times 10^7 = 1.2 \times 10^{41}$ ergs.

<u>Problem 2:</u> One gram of matter converted into energy yields 3.0×10^{20} ergs of energy. How many tons of matter in the sun is annihilated every second to produce its luminosity of 3.9×10^{33} ergs per second? (One metric ton = 10^6 grams). **Answer:** $3.9 \times 10^{33}/3.0 \times 10^{20} = 1.3 \times 10^{13}$ grams per second, or $1.3 \times 10^{13}/10^6 = 1.3 \times 10^5$ metric tons of mass.

<u>Problem 3:</u> The mass of the sun is 1.98×10^{33} grams. If a single proton has a mass of 1.6×10^{-24} grams, how many protons are in the sun? **Answer:** $1.98 \times 10^{33} / 1.6 \times 10^{-24} = 1.2 \times 10^{57}$ protons.

<u>Problem 4:</u> The approximate volume of the visible universe (A sphere with a radius of about 14 billion light years) is 1.1×10^{31} cubic light-years. If a light-year equals 9.2×10^{17} centimeters, how many cubic centimeters does the visible universe occupy? **Answer:** 1 cubic light year = $(9.2 \times 10^{17})^3 = 7.8 \times 10^{53}$ cubic centimeters, so the universe contains $7.8 \times 10^{53} \times 1.1 \times 10^{31} = 8.6 \times 10^{84}$ cubic centimeters.

<u>Problem 5:</u> A coronal mass ejection from the sun travels 1.5×10^{13} centimeters in 17 hours. What is its speed in kilometers per second? **Answer:** $1.5 \times 10^{13} / (17 \times 3.6 \times 10^{3}) = 2.4 \times 10^{8}$ cm/sec = 2,400 km/sec.

<u>Problem 6:</u> The NASA data archive at the Goddard Space Flight Center contains 25 terabytes of data from over 1000 science missions and investigations. (1 terabyte = 10^{15} bytes). How many CD-roms does this equal if the capacity of a CD-rom is about $6x10^8$ bytes? How long would it take, in years, to transfer this data by a dial-up modem operating at 56,000 bits/second? (Note: one byte = 8 bits). **Answer:** $2.5 \times 10^{16} / 6x10^8 = 4.2 \times 10^7$ Cdroms. It would take $2.5 \times 10^{16} / 7,000 = 3.6 \times 10^{12}$ seconds or about 1.1×10^5 years.

<u>Problem 7:</u> Pluto is located at an average distance of 5.9×10^{14} centimeters from Earth. At the speed of light (2.99 x 10^{10} cm/sec) how long does it take a light signal (or radio message) to travel to Pluto and return? **Answer:** $2 \times 5.98 \times 10^{14} / 2.99 \times 10^{10} = 4.0 \times 10^{4}$ seconds or 11 hours.

<u>Problem 8:</u> The planet HD209458b, now known as Osiris, was discovered by astronomers in 1999 and is at a distance of 150 light-years (1 light-year = 9.2×10^{12} kilometers). If an interstellar probe were sent to investigate this world up close, traveling at a maximum speed of 700 km/sec (about 10 times faster than our fastest spacecraft: Helios-1), how long would it take to reach Osiris? **Answer:** $150 \times 9.2 \times 10^{12}/700 = 1.9 \times 10^{12}$ seconds or about 64,000 years!