Regents Exam Questions A.N.4: Operations with Scientific Notation Name: www.jmap.org

A.N.4: Operations with Scientific Notation: Understand and use scientific notation to compute products and quotients of numbers

1 What is the product of 8.4×10^{8} and 4.2×10^{3} written in scientific notation?

1) 2.0×10^{5}
2) 12.6×10^{11}
3) 35.28×10^{11}
4) 3.528×10^{12}

2 What is the product of 12 and 4.2×10^{6} expressed in scientific notation?

1) 50.4×10^{6}
2) 50.4×10^{7}
3) 5.04×10^{6}
4) 5.04×10^{7}

3 What is the product of $\left(6 \times 10^{3}\right),\left(4.6 \times 10^{5}\right)$, and $\left(2 \times 10^{-2}\right)$ expressed in scientific notation?

1) 55.2×10^{6}
2) 5.52×10^{7}
3) 55.2×10^{7}
4) 5.52×10^{10}

4 What is the quotient of 8.05×10^{6} and 3.5×10^{2} ?

1) 2.3×10^{3}
2) 2.3×10^{4}
3) 2.3×10^{8}
4) 2.3×10^{12}

5 The quotient of $\left(9.2 \times 10^{6}\right)$ and $\left(2.3 \times 10^{2}\right)$ expressed in scientific notation is

1) 4,000
2) 40,000
3) 4×10^{3}
4) 4×10^{4}

6 If 3.85×10^{6} is divided by 385×10^{4}, the result is

1) 1
2) 0.01
3) 3.85×10^{2}
4) 3.85×10^{10}

7 What is the value of $\frac{6.3 \times 10^{8}}{3 \times 10^{4}}$ in scientific notation?

1) 2.1×10^{-2}
2) 2.1×10^{2}
3) 2.1×10^{-4}
4) 2.1×10^{4}

8 The expression $\frac{6 \times 10^{-7}}{3 \times 10^{-3}}$ is equivalent to

1) 2×10^{4}
2) 2×10^{10}
3) 2×10^{-4}
4) 2×10^{-10}

Regents Exam Questions A.N.4: Operations with Scientific Notation Name: www.jmap.org

9 State the value of the expression
$\frac{\left(4.1 \times 10^{2}\right)\left(2.4 \times 10^{3}\right)}{\left(1.5 \times 10^{7}\right)}$ in scientific notation.

10 If the mass of a proton is 1.67×10^{-24} gram, what is the mass of 1,000 protons?

1) $1.67 \times 10^{-27} \mathrm{~g}$
2) $1.67 \times 10^{-23} \mathrm{~g}$
3) $1.67 \times 10^{-22} \mathrm{~g}$
4) $1.67 \times 10^{-21} \mathrm{~g}$

11 If the number of molecules in 1 mole of a substance is 6.02×10^{23}, then the number of molecules in 100 moles is

1) 6.02×10^{21}
2) 6.02×10^{22}
3) 6.02×10^{24}
4) 6.02×10^{25}

12 In 1995, the federal government paid off one-third of its debt. If the original amount of the debt was $\$ 4,920,000,000,000$, which expression represents the amount that was not paid off?

1) 1.64×10^{4}
2) 1.64×10^{12}
3) 3.28×10^{8}
4) 3.28×10^{12}

13 Two objects are 2.4×10^{20} centimeters apart. A message from one object travels to the other at a rate of 1.2×10^{5} centimeters per second. How many seconds does it take the message to travel from one object to the other?

1) 1.2×10^{15}
2) 2.0×10^{4}
3) 2.0×10^{15}
4) 2.88×10^{25}

14 The distance from Earth to the imaginary planet Med is 1.7×10^{7} miles. If a spaceship is capable of traveling 1,420 miles per hour, how many days will it take the spaceship to reach the planet Med? Round your answer to the nearest day.
A.N.4: Operations with Scientific Notation: Understand and use scientific notation to compute products and quotients of numbers
Answer Section

1	ANS: 4	REF: 010927ia
2	ANS: 4	REF: 060927ia
3	ANS: 2	REF: 061127ia
4	ANS: 2	REF: fall0725ia
5	ANS: 4	
	$\underline{9.2 \times 10^{6}}=4 \times 10^{4}$	
	2.3×10^{2}	
	REF: 081006ia	
6	ANS: 1	REF: 060207a
7	ANS: 4	REF: 010319a
8	ANS: 3	REF: 011319ia
9	ANS:	
	6.56×10^{-2}	
	REF: 081231ia	
10	ANS: 4	REF: 060429a
11	ANS: 4	REF: 010018a
12	ANS: 4	REF: 060815b
13	ANS: 3	
	$\underline{\text { distance }}=2.4 \times$	$\mathrm{c}=20 \times 10$

REF: 060308b
14 ANS:
499. $\frac{\text { distance }}{\text { speed }}=\frac{1.7 \times 10^{7} \mathrm{miles}}{1420 \mathrm{mph}} \approx 11972$ hours ≈ 499 days

REF: 060029a

