(1) Hailey wrote a computer program that generates two random numbers between one and nine. When she runs it, what is the probability that both values will be seven?

(2) The game show contestant spins a spinner with the letters A through F on it, then either an easy or hard question is picked randomly for her. What is the probability that the spinner will not stop on the letter B and she is given a hard question?

(3) Ashley tossed a die onto a black-and-red checkerboard. What is the probability that it will land with a value of one, on a red square?

(4) The names of six boys and eleven girls from your class are put into a hat. What is the probability that the first two names chosen will be a boy followed by a girl?
(1) Hailey wrote a computer program that generates two random numbers between one and nine. When she runs it, what is the probability that both values will be seven?

\[
\frac{1}{9} \times \frac{1}{9} = \frac{1}{81}
\]

(2) The game show contestant spins a spinner with the letters A through F on it, then either an easy or hard question is picked randomly for her. What is the probability that the spinner will not stop on the letter B and she is given a hard question?

\[
\frac{5}{6} \times \frac{1}{2} = \frac{5}{12}
\]

(3) Ashley tossed a die onto a black-and-red checkerboard. What is the probability that it will land with a value of one, on a red square?

\[
\frac{1}{2} \times \frac{1}{6} = \frac{1}{12}
\]

(4) The names of six boys and eleven girls from your class are put into a hat. What is the probability that the first two names chosen will be a boy followed by a girl?

\[
\frac{6}{17} \times \frac{11}{16} = \frac{66}{272} = \frac{33}{136}
\]